Lectura de datos

load("Icfes162.RData")

Cargando bibliotecas

library(dplyr)
library(ggplot2)
library(corrplot)

50. Partiendo del análisis global de estos resultados, ¿Es verdad que. . . “Antioquia la más educada”?

Matriz de correlaciones

datos <- icfes %>%
  select(c(3, 4, 7, 16, 18, 20, 26, 27, 28, 29, 65:78, 80:81)) %>%
  filter(ESTU_ESTUDIANTE == "ESTUDIANTE")

datoscor <- datos %>%
  select(c(11:26))

color <- rainbow(n = 16, v = 0.6, start = 0.2, end = 1)
dfcor <- cor(datoscor, use = "na.or.complete")
corrplot(dfcor, method = 'circle', tl.col="black",
         col = color, tl.cex = 2)

Resumen numérico

summary(datoscor)
##  PUNT_LECTURA_CRITICA PERCENTIL_LECTURA_CRITICA DESEMP_LECTURA_CRITICA PUNT_MATEMATICAS
##  Min.   :  0.00       Min.   :  1.00            Min.   :1.000          Min.   :  0.00  
##  1st Qu.: 45.00       1st Qu.: 23.00            1st Qu.:2.000          1st Qu.: 41.00  
##  Median : 52.00       Median : 49.00            Median :3.000          Median : 51.00  
##  Mean   : 51.39       Mean   : 48.99            Mean   :2.575          Mean   : 49.64  
##  3rd Qu.: 59.00       3rd Qu.: 75.00            3rd Qu.:3.000          3rd Qu.: 59.00  
##  Max.   :100.00       Max.   :100.00            Max.   :4.000          Max.   :100.00  
##  PERCENTIL_MATEMATICAS DESEMP_MATEMATICAS PUNT_C_NATURALES PERCENTIL_C_NATURALES DESEMP_C_NATURALES
##  Min.   :  1.00        Min.   :1.000      Min.   :  0.00   Min.   :  1.00        Min.   :1.000     
##  1st Qu.: 23.00        1st Qu.:2.000      1st Qu.: 45.00   1st Qu.: 23.00        1st Qu.:2.000     
##  Median : 49.00        Median :2.000      Median : 52.00   Median : 49.00        Median :2.000     
##  Mean   : 48.97        Mean   :2.392      Mean   : 51.41   Mean   : 49.02        Mean   :2.237     
##  3rd Qu.: 75.00        3rd Qu.:3.000      3rd Qu.: 59.00   3rd Qu.: 75.00        3rd Qu.:3.000     
##  Max.   :100.00        Max.   :4.000      Max.   :100.00   Max.   :100.00        Max.   :4.000     
##  PUNT_SOCIALES_CIUDADANAS PERCENTIL_SOCIALES_CIUDADANAS DESEMP_SOCIALES_CIUDADANAS  PUNT_INGLES    
##  Min.   :  0.0            Min.   :  1.00                Min.   :1.000              Min.   :  0.00  
##  1st Qu.: 42.0            1st Qu.: 23.00                1st Qu.:2.000              1st Qu.: 43.00  
##  Median : 50.0            Median : 49.00                Median :2.000              Median : 50.00  
##  Mean   : 49.4            Mean   : 49.01                Mean   :2.108              Mean   : 50.78  
##  3rd Qu.: 58.0            3rd Qu.: 75.00                3rd Qu.:3.000              3rd Qu.: 59.00  
##  Max.   :100.0            Max.   :100.00                Max.   :4.000              Max.   :100.00  
##  PERCENTIL_INGLES  PUNT_GLOBAL    PERCENTIL_GLOBAL
##  Min.   :  1.00   Min.   :  0.0   Min.   :  1.00  
##  1st Qu.: 23.00   1st Qu.:220.0   1st Qu.: 24.00  
##  Median : 49.00   Median :255.0   Median : 49.00  
##  Mean   : 49.05   Mean   :252.4   Mean   : 49.35  
##  3rd Qu.: 75.00   3rd Qu.:290.0   3rd Qu.: 75.00  
##  Max.   :100.00   Max.   :468.0   Max.   :100.00

Estandarización de variables

datosstd <- data.frame(scale(datos[, 11:26]))
head(datosstd[1:5, 1:5])
##   PUNT_LECTURA_CRITICA PERCENTIL_LECTURA_CRITICA DESEMP_LECTURA_CRITICA PUNT_MATEMATICAS
## 1            1.1871477                 1.4570253              1.9546047        1.0475057
## 2            0.6996931                 0.9149413              0.5826721        0.6099089
## 3            1.1871477                 1.4570253              1.9546047        0.5369761
## 4            1.4308750                 1.5925463              1.9546047        0.4640434
## 5            1.8370871                 1.6941870              1.9546047        1.6309680
##   PERCENTIL_MATEMATICAS
## 1             1.2542382
## 2             0.8139531
## 3             0.6784807
## 4             0.6107445
## 5             1.6267872
summary(datosstd)
##  PUNT_LECTURA_CRITICA PERCENTIL_LECTURA_CRITICA DESEMP_LECTURA_CRITICA PUNT_MATEMATICAS  
##  Min.   :-4.17485     Min.   :-1.6260775        Min.   :-2.1612        Min.   :-3.62019  
##  1st Qu.:-0.51894     1st Qu.:-0.8807120        1st Qu.:-0.7893        1st Qu.:-0.62995  
##  Median : 0.04975     Median : 0.0001745        Median : 0.5827        Median : 0.09938  
##  Mean   : 0.00000     Mean   : 0.0000000        Mean   : 0.0000        Mean   : 0.00000  
##  3rd Qu.: 0.61845     3rd Qu.: 0.8810610        3rd Qu.: 0.5827        3rd Qu.: 0.68284  
##  Max.   : 3.94939     Max.   : 1.7280673        Max.   : 1.9546        Max.   : 3.67309  
##  PERCENTIL_MATEMATICAS DESEMP_MATEMATICAS PUNT_C_NATURALES  PERCENTIL_C_NATURALES DESEMP_C_NATURALES
##  Min.   :-1.624549     Min.   :-1.8123    Min.   :-4.1922   Min.   :-1.6273999    Min.   :-1.7171   
##  1st Qu.:-0.879451     1st Qu.:-0.5106    1st Qu.:-0.5227   1st Qu.:-0.8818757    1st Qu.:-0.3285   
##  Median : 0.001119     Median :-0.5106    Median : 0.0481   Median :-0.0008016    Median :-0.3285   
##  Mean   : 0.000000     Mean   : 0.0000    Mean   : 0.0000   Mean   : 0.0000000    Mean   : 0.0000   
##  3rd Qu.: 0.881689     3rd Qu.: 0.7911    3rd Qu.: 0.6189   3rd Qu.: 0.8802725    3rd Qu.: 1.0602   
##  Max.   : 1.728392     Max.   : 2.0929    Max.   : 3.9622   Max.   : 1.7274592    Max.   : 2.4488   
##  PUNT_SOCIALES_CIUDADANAS PERCENTIL_SOCIALES_CIUDADANAS DESEMP_SOCIALES_CIUDADANAS  PUNT_INGLES      
##  Min.   :-3.81514         Min.   :-1.6270687            Min.   :-1.4196            Min.   :-3.66815  
##  1st Qu.:-0.57133         1st Qu.:-0.8814277            1st Qu.:-0.1379            1st Qu.:-0.56180  
##  Median : 0.04654         Median :-0.0002155            Median :-0.1379            Median :-0.05611  
##  Mean   : 0.00000         Mean   : 0.0000000            Mean   : 0.0000            Mean   : 0.00000  
##  3rd Qu.: 0.66440         3rd Qu.: 0.8809967            3rd Qu.: 1.1437            3rd Qu.: 0.59406  
##  Max.   : 3.90821         Max.   : 1.7283160            Max.   : 2.4254            Max.   : 3.55593  
##  PERCENTIL_INGLES     PUNT_GLOBAL       PERCENTIL_GLOBAL  
##  Min.   :-1.630374   Min.   :-4.19401   Min.   :-1.63968  
##  1st Qu.:-0.883959   1st Qu.:-0.53858   1st Qu.:-0.85968  
##  Median :-0.001832   Median : 0.04297   Median :-0.01186  
##  Mean   : 0.000000   Mean   : 0.00000   Mean   : 0.00000  
##  3rd Qu.: 0.880294   3rd Qu.: 0.62451   3rd Qu.: 0.86988  
##  Max.   : 1.728493   Max.   : 3.58209   Max.   : 1.71770

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas (sin estandarizar)

ggplot(data = datos, aes(x = PUNT_LECTURA_CRITICA, y = PUNT_SOCIALES_CIUDADANAS)) +
  geom_point(col = "gray10", fill = "magenta4")

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas por género (estandarizadas)

names(datosstd) <- paste0(names(datosstd), "_E")
datosstd2 <- cbind(datos, datosstd) %>% 
  filter(ESTU_GENERO != "")

ggplot(data = datosstd2, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_GENERO)) +
  scale_color_manual(values = c("orange4", "navy")) +
  geom_point(size = 4) +
  geom_vline(xintercept = 0, col = "red", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "red", lty = 2, lwd = 0.9) +
  theme_bw()

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas por departamento (estandarizadas)

datosstd2_dpto <- datosstd2 %>% 
  filter(ESTU_RESIDE_DEPTO != "")

colores <- rainbow(n = 34, v = 0.6, start = 0, end = 1)
ggplot(data = datosstd2_dpto, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_RESIDE_DEPTO)) +
  scale_color_manual(values = colores) +
  geom_jitter(size = 4) +
  geom_vline(xintercept = 0, col = "red", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "red", lty = 2, lwd = 0.9) +
  theme_bw()

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas para 5 departamentos (estandarizadas)

datosstd2_dpto2 <- datosstd2_dpto %>% 
  filter(ESTU_RESIDE_DEPTO == "VALLE"
         | ESTU_RESIDE_DEPTO == "SANTANDER" | ESTU_RESIDE_DEPTO == "ATLANTICO"
         | ESTU_RESIDE_DEPTO == "ANTIOQUIA" | ESTU_RESIDE_DEPTO == "BOGOTA")

colores <- c("orangered1", "dodgerblue2", "magenta4", "gray10", "yellow2")
ggplot(data = datosstd2_dpto2, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_RESIDE_DEPTO)) +
  scale_color_manual(values = colores) +
  geom_jitter(size = 4) +
  geom_vline(xintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  theme_bw()

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas para 5 departamentos (Antioquia)

colores <- c("orangered1", "gray20", "gray32", "gray44", "gray56")
ggplot(data = datosstd2_dpto2, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_RESIDE_DEPTO)) +
  scale_color_manual(values = colores) +
  geom_jitter(size = 4) +
  geom_vline(xintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  theme_bw()

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas para 5 departamentos (Atláltico)

colores <- c("gray8", "dodgerblue2", "gray32", "gray44", "gray56")
ggplot(data = datosstd2_dpto2, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_RESIDE_DEPTO)) +
  scale_color_manual(values = colores) +
  geom_jitter(size = 4) +
  geom_vline(xintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  theme_bw()

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas para 5 departamentos (Bogotá)

colores <- c("gray8", "gray20", "magenta4", "gray44", "gray56")
ggplot(data = datosstd2_dpto2, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_RESIDE_DEPTO)) +
  scale_color_manual(values = colores) +
  geom_jitter(size = 4) +
  geom_vline(xintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  theme_bw()

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas para 5 departamentos (Santander)

colores <- c("gray8", "gray20", "gray32", "forestgreen", "gray56")
ggplot(data = datosstd2_dpto2, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_RESIDE_DEPTO)) +
  scale_color_manual(values = colores) +
  geom_jitter(size = 4) +
  geom_vline(xintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  theme_bw()

Puntaje lectura crítica vs Puntaje en sociales-ciudadanas para 5 departamentos (Valle del cauca)

colores <- c("gray8", "gray20", "gray32", "gray44", "yellow2")
ggplot(data = datosstd2_dpto2, aes(x = PUNT_LECTURA_CRITICA_E, y = PUNT_SOCIALES_CIUDADANAS_E,
                             color = ESTU_RESIDE_DEPTO)) +
  scale_color_manual(values = colores) +
  geom_jitter(size = 4) +
  geom_vline(xintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  geom_hline(yintercept = 0, col = "darkred", lty = 2, lwd = 0.9) +
  theme_bw()

Cálculo de las componentes principales

acp <- princomp(datosstd2[, 27:42], cor = TRUE)

Valores propios

summary(acp)
## Importance of components:
##                           Comp.1    Comp.2     Comp.3     Comp.4     Comp.5     Comp.6     Comp.7
## Standard deviation     3.5562231 0.8480679 0.83377966 0.75286569 0.70770468 0.66236404 0.34009717
## Proportion of Variance 0.7904202 0.0449512 0.04344928 0.03542542 0.03130287 0.02742038 0.00722913
## Cumulative Proportion  0.7904202 0.8353714 0.87882065 0.91424607 0.94554894 0.97296933 0.98019846
##                             Comp.8      Comp.9     Comp.10     Comp.11      Comp.12      Comp.13
## Standard deviation     0.313671637 0.298547813 0.286949222 0.142014720 0.1034646038 0.0861031334
## Proportion of Variance 0.006149368 0.005570675 0.005146241 0.001260511 0.0006690578 0.0004633593
## Cumulative Proportion  0.986347826 0.991918500 0.997064741 0.998325253 0.9989943104 0.9994576697
##                             Comp.14     Comp.15      Comp.16
## Standard deviation     0.0809687169 0.044641138 1.133668e-02
## Proportion of Variance 0.0004097458 0.000124552 8.032518e-06
## Cumulative Proportion  0.9998674155 0.999991967 1.000000e+00

plot(acp$sdev, type="b",
     xlab = "Componente principal",
     ylab = "Valor propio",
     main = "Gráfico de sedimentación (pareto)")
abline(v = 3, col = "red", lty = 2, lwd = 0.6)
abline(v = 7, col = "blue", lty = 2, lwd = 0.4)

Vectores propios

loadings(acp)
## 
## Loadings:
##                                 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
## PUNT_LECTURA_CRITICA_E          -0.252 -0.286 -0.213 -0.363  0.159                0.337        -0.136 
## PERCENTIL_LECTURA_CRITICA_E     -0.249 -0.132 -0.381 -0.124 -0.147  0.341  0.284  0.437        -0.109 
## DESEMP_LECTURA_CRITICA_E        -0.238 -0.215 -0.394 -0.258         0.324 -0.422 -0.609         0.124 
## PUNT_MATEMATICAS_E              -0.259  0.170  0.172 -0.322        -0.272        -0.108 -0.353        
## PERCENTIL_MATEMATICAS_E         -0.252  0.357  0.110 -0.142 -0.335         0.244 -0.171 -0.430        
## DESEMP_MATEMATICAS_E            -0.238  0.387  0.142 -0.237 -0.371        -0.411  0.238  0.587        
## PUNT_C_NATURALES_E              -0.256         0.187 -0.120  0.495               -0.166  0.233 -0.178 
## PERCENTIL_C_NATURALES_E         -0.254  0.246  0.108  0.173  0.262  0.321  0.335 -0.281  0.338 -0.181 
## DESEMP_C_NATURALES_E            -0.239  0.264  0.147  0.174  0.406  0.383 -0.446  0.345 -0.379  0.218 
## PUNT_SOCIALES_CIUDADANAS_E      -0.260 -0.119 -0.126  0.124  0.166 -0.447                       0.361 
## PERCENTIL_SOCIALES_CIUDADANAS_E -0.255        -0.249  0.400        -0.188  0.131                0.498 
## DESEMP_SOCIALES_CIUDADANAS_E    -0.240        -0.278  0.492        -0.255 -0.280        -0.131 -0.672 
## PUNT_INGLES_E                   -0.234 -0.476  0.430                      -0.116                      
## PERCENTIL_INGLES_E              -0.223 -0.390  0.422  0.269 -0.345  0.253                             
## PUNT_GLOBAL_E                   -0.273               -0.166  0.169 -0.220                             
## PERCENTIL_GLOBAL_E              -0.274  0.119         0.116 -0.137  0.146  0.269                      
##                                 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16
## PUNT_LECTURA_CRITICA_E           0.207   0.624           0.171           0.211 
## PERCENTIL_LECTURA_CRITICA_E     -0.178  -0.486          -0.159  -0.200         
## DESEMP_LECTURA_CRITICA_E                                                       
## PUNT_MATEMATICAS_E                      -0.230   0.618   0.214           0.234 
## PERCENTIL_MATEMATICAS_E                  0.179  -0.480  -0.196  -0.292         
## DESEMP_MATEMATICAS_E                                                           
## PUNT_C_NATURALES_E               0.169  -0.425  -0.454   0.220           0.210 
## PERCENTIL_C_NATURALES_E         -0.147   0.316   0.377  -0.184  -0.160         
## DESEMP_C_NATURALES_E                                                           
## PUNT_SOCIALES_CIUDADANAS_E                              -0.682           0.221 
## PERCENTIL_SOCIALES_CIUDADANAS_E                          0.547  -0.298         
## DESEMP_SOCIALES_CIUDADANAS_E                                                   
## PUNT_INGLES_E                   -0.704                                         
## PERCENTIL_INGLES_E               0.590                                         
## PUNT_GLOBAL_E                                                           -0.895 
## PERCENTIL_GLOBAL_E                              -0.147   0.100   0.860         
## 
##                Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12
## SS loadings     1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000   1.000   1.000   1.000
## Proportion Var  0.063  0.063  0.063  0.062  0.063  0.063  0.062  0.062  0.062   0.062   0.063   0.062
## Cumulative Var  0.063  0.125  0.188  0.250  0.313  0.375  0.438  0.500  0.563   0.625   0.688   0.750
##                Comp.13 Comp.14 Comp.15 Comp.16
## SS loadings      1.000   1.000   1.000   1.000
## Proportion Var   0.063   0.063   0.062   0.062
## Cumulative Var   0.813   0.875   0.938   1.000

Puntajes

head(acp$scores, n = 10)
##          Comp.1     Comp.2     Comp.3      Comp.4     Comp.5     Comp.6      Comp.7      Comp.8
##  [1,] -4.243715  0.5980125 -1.4838740 -0.32704885  0.1967541  0.3730123 -0.01406390 -0.45692672
##  [2,] -2.622393 -0.3490588  0.9294425 -0.37766459 -0.3758278  1.0066672 -0.02271030  0.37749253
##  [3,] -4.695078 -0.4886441 -0.7279185  0.31860583  0.2413117  0.7250235 -0.08508084 -0.43465941
##  [4,] -4.495903 -1.0444912 -0.5470604  0.18076910 -0.2198498  0.9206237 -0.34175678 -0.07138675
##  [5,] -6.101369  0.2658524 -0.4284546 -0.74392393 -0.4260703  0.2041977 -0.07141037 -0.12418287
##  [6,]  4.139839 -1.2424016 -0.6315911 -0.59232592  0.4286089 -0.2040696  0.75553464  0.10735257
##  [7,] -5.691716  0.1889588  0.7952053  0.81511364  0.9077928  0.4083028  0.17732057  0.40025441
##  [8,]  1.358756 -0.3393591  0.4159439  0.03932809  0.2062659 -0.1536299  0.12527600  0.31853438
##  [9,]  3.923731 -0.9495590  0.4275942 -1.27494409 -1.0585215  0.1308668  0.09702469  0.40041390
## [10,] -2.467578 -1.6568852 -0.6921145 -1.04061533 -1.2502580  0.7905972 -0.17367955 -0.01080916
##              Comp.9     Comp.10     Comp.11      Comp.12       Comp.13      Comp.14     Comp.15
##  [1,] -0.1873425660  0.11042152  0.01435226  0.006056893  0.0008335378  0.028973617 -0.02988437
##  [2,] -0.1260180858  0.15147094 -0.06396832  0.052852416 -0.0221689820 -0.051262056  0.03674905
##  [3,]  0.4464597233  0.12824323  0.09321098 -0.025415955 -0.0600224070 -0.006773541 -0.01100345
##  [4,]  0.2000970395 -0.02367566 -0.10796978  0.163064551 -0.0233291544  0.046391526  0.02801777
##  [5,]  0.4809530315  0.05297200  0.22017428  0.153847633  0.0487153566  0.073398009 -0.07958630
##  [6,]  0.0441735236  0.06904131 -0.08650860 -0.004921357 -0.0543198043 -0.036419436 -0.02288259
##  [7,] -0.3643742958  0.31467075 -0.04645757 -0.208514576 -0.2134230794  0.001431311 -0.08603064
##  [8,] -0.0962049248 -0.45231070  0.12466570 -0.027177695  0.0019482653  0.011305126  0.05579465
##  [9,] -0.0004434339 -0.41585312 -0.05575884  0.177100560  0.1851495775  0.202856553 -0.13562300
## [10,]  0.3888494028  0.37771831  0.05811808  0.029272356 -0.0995082678  0.068591742  0.11848288
##             Comp.16
##  [1,]  2.911726e-04
##  [2,] -6.764910e-03
##  [3,] -2.271688e-02
##  [4,] -1.537054e-02
##  [5,] -5.396840e-06
##  [6,] -3.151189e-03
##  [7,]  2.744229e-02
##  [8,]  2.128395e-02
##  [9,]  1.504658e-02
## [10,] -1.831830e-02

Concatenando resultados

datosACP <- data.frame(datosstd2, acp$scores[, c(1, 2, 3)])
head(datosACP, n = 10)
##    ESTU_ESTUDIANTE ESTU_EDAD ESTU_GENERO ESTU_AREA_RESIDE ESTU_RESIDE_MCPIO ESTU_RESIDE_DEPTO
## 1       ESTUDIANTE        18           M                R       LA ESTRELLA         ANTIOQUIA
## 2       ESTUDIANTE        16           M                R       LA ESTRELLA         ANTIOQUIA
## 3       ESTUDIANTE        17           M                R          ENVIGADO         ANTIOQUIA
## 4       ESTUDIANTE        17           M                R       LA ESTRELLA         ANTIOQUIA
## 5       ESTUDIANTE        16           M                R             PAIPA            BOYACA
## 6       ESTUDIANTE        19           M                R       LA ESTRELLA         ANTIOQUIA
## 7       ESTUDIANTE        16           F                U            CUCUTA   NORTE SANTANDER
## 8       ESTUDIANTE        18           F                U      BARRANQUILLA         ATLANTICO
## 9       ESTUDIANTE        17           M                R          ENVIGADO         ANTIOQUIA
## 10      ESTUDIANTE        16           F                U            CUCUTA   NORTE SANTANDER
##    COLE_JORNADA COLE_GENERO     COLE_CARACTER COLE_NATURALEZA PUNT_LECTURA_CRITICA
## 1             C       MIXTO         ACADÉMICO      NO OFICIAL                   66
## 2             C       MIXTO         ACADÉMICO      NO OFICIAL                   60
## 3             C       MIXTO         ACADÉMICO      NO OFICIAL                   66
## 4             C       MIXTO         ACADÉMICO      NO OFICIAL                   69
## 5             M       MIXTO TÉCNICO/ACADÉMICO         OFICIAL                   74
## 6             C       MIXTO         ACADÉMICO      NO OFICIAL                   49
## 7             M       MIXTO         ACADÉMICO      NO OFICIAL                   64
## 8             M    FEMENINO TÉCNICO/ACADÉMICO         OFICIAL                   50
## 9             C       MIXTO         ACADÉMICO      NO OFICIAL                   49
## 10            M       MIXTO         ACADÉMICO      NO OFICIAL                   68
##    PERCENTIL_LECTURA_CRITICA DESEMP_LECTURA_CRITICA PUNT_MATEMATICAS PERCENTIL_MATEMATICAS
## 1                         92                      4               64                    86
## 2                         76                      3               58                    73
## 3                         92                      4               57                    69
## 4                         96                      4               56                    67
## 5                         99                      4               72                    97
## 6                         37                      2               33                     7
## 7                         87                      3               66                    90
## 8                         39                      2               46                    34
## 9                         35                      2               42                    24
## 10                        94                      4               53                    58
##    DESEMP_MATEMATICAS PUNT_C_NATURALES PERCENTIL_C_NATURALES DESEMP_C_NATURALES PUNT_SOCIALES_CIUDADANAS
## 1                   3               63                    85                  3                       63
## 2                   3               57                    69                  3                       51
## 3                   3               67                    94                  3                       65
## 4                   3               61                    82                  3                       61
## 5                   4               69                    96                  3                       67
## 6                   1               41                    12                  1                       40
## 7                   3               75                   100                  4                       69
## 8                   2               50                    37                  2                       44
## 9                   2               34                     4                  1                       28
## 10                  3               51                    44                  2                       54
##    PERCENTIL_SOCIALES_CIUDADANAS DESEMP_SOCIALES_CIUDADANAS PUNT_INGLES PERCENTIL_INGLES PUNT_GLOBAL
## 1                             88                          3          51               50         315
## 2                             53                          2          67               89         287
## 3                             91                          3          63               84         320
## 4                             83                          3          70               92         313
## 5                             93                          3          64               85         350
## 6                             18                          1          41               17         204
## 7                             96                          3          72               94         342
## 8                             29                          2          50               48         237
## 9                              1                          1          48               40         194
## 10                            63                          2          65               87         287
##    PERCENTIL_GLOBAL PUNT_LECTURA_CRITICA_E PERCENTIL_LECTURA_CRITICA_E DESEMP_LECTURA_CRITICA_E
## 1                88              1.1871477                   1.4570253                1.9546047
## 2                73              0.6996931                   0.9149413                0.5826721
## 3                90              1.1871477                   1.4570253                1.9546047
## 4                87              1.4308750                   1.5925463                1.9546047
## 5                98              1.8370871                   1.6941870                1.9546047
## 6                14             -0.1939737                  -0.4063885               -0.7892605
## 7                96              1.0246628                   1.2876240                0.5826721
## 8                36             -0.1127312                  -0.3386280               -0.7892605
## 9                10             -0.1939737                  -0.4741490               -0.7892605
## 10               73              1.3496325                   1.5247858                1.9546047
##    PUNT_MATEMATICAS_E PERCENTIL_MATEMATICAS_E DESEMP_MATEMATICAS_E PUNT_C_NATURALES_E
## 1           1.0475057               1.2542382            0.7911394         0.94508344
## 2           0.6099089               0.8139531            0.7911394         0.45582009
## 3           0.5369761               0.6784807            0.7911394         1.27125901
## 4           0.4640434               0.6107445            0.7911394         0.78199566
## 5           1.6309680               1.6267872            2.0928775         1.43434679
## 6          -1.2134109              -1.4213408           -1.8123368        -0.84888217
## 7           1.1933713               1.3897106            0.7911394         1.92361014
## 8          -0.2652846              -0.5069024           -0.5105987        -0.11498715
## 9          -0.5570157              -0.8455833           -0.5105987        -1.41968941
## 10          0.2452450               0.3059317            0.7911394        -0.03344325
##    PERCENTIL_C_NATURALES_E DESEMP_C_NATURALES_E PUNT_SOCIALES_CIUDADANAS_E
## 1                1.2191472            1.0601857                  1.0505711
## 2                0.6769477            1.0601857                  0.1237694
## 3                1.5241344            1.0601857                  1.2050380
## 4                1.1174848            1.0601857                  0.8961042
## 5                1.5919093            1.0601857                  1.3595050
## 6               -1.2546378           -1.7171200                 -0.7257988
## 7                1.7274592            2.4488386                  1.5139719
## 8               -0.4074511           -0.3284671                 -0.4168649
## 9               -1.5257375           -1.7171200                 -1.6526005
## 10              -0.1702389           -0.3284671                  0.3554698
##    PERCENTIL_SOCIALES_CIUDADANAS_E DESEMP_SOCIALES_CIUDADANAS_E PUNT_INGLES_E PERCENTIL_INGLES_E
## 1                        1.3216027                    1.1437322    0.01613195         0.03209566
## 2                        0.1353556                   -0.1379223    1.17198610         1.35528568
## 3                        1.4232811                    1.1437322    0.88302256         1.18564594
## 4                        1.1521389                    1.1437322    1.38870875         1.45706953
## 5                        1.4910666                    1.1437322    0.95526344         1.21957389
## 6                       -1.0508915                   -1.4195767   -0.70627689        -1.08752667
## 7                        1.5927449                    1.1437322    1.53319052         1.52492543
## 8                       -0.6780710                   -0.1379223   -0.05610894        -0.03576024
## 9                       -1.6270687                   -1.4195767   -0.20059070        -0.30718384
## 10                       0.4742834                   -0.1379223    1.02750433         1.28742978
##    PUNT_GLOBAL_E PERCENTIL_GLOBAL_E    Comp.1     Comp.2     Comp.3
## 1      1.0399020          1.3107442 -4.243715  0.5980125 -1.4838740
## 2      0.5746654          0.8020507 -2.622393 -0.3490588  0.9294425
## 3      1.1229800          1.3785701 -4.695078 -0.4886441 -0.7279185
## 4      1.0066708          1.2768313 -4.495903 -1.0444912 -0.5470604
## 5      1.6214478          1.6498733 -6.101369  0.2658524 -0.4284546
## 6     -0.8044287         -1.1988104  4.139839 -1.2424016 -0.6315911
## 7      1.4885230          1.5820475 -5.691716  0.1889588  0.7952053
## 8     -0.2561142         -0.4527266  1.358756 -0.3393591  0.4159439
## 9     -0.9705847         -1.3344620  3.923731 -0.9495590  0.4275942
## 10     0.5746654          0.8020507 -2.467578 -1.6568852 -0.6921145

Estudiantes proyectados sobre las componentes principales 1 y 2 por género

library(ggfortify)
autoplot(acp, data = datosstd2, col = 'ESTU_GENERO', loadings = TRUE,
         loadings.colour = 'black', loadings.label = TRUE,
         loadings.label.size = 4) + 
  scale_color_manual(values = c("green3", "midnightblue")) +
  geom_vline(xintercept = 0, lty = 2, lwd = 1.2, col = "orangered2") +
  geom_hline(yintercept = 0, lty = 2, lwd = 1.2, col = "orangered2") +
  labs(x = "Componente principal 1",
       y = "Componente principal 2",
       color = "Género") + 
  theme_bw()

Estudiantes proyectados sobre las componentes principales 1 y 2 por departamento

colores <- rainbow(n = 34, v = 0.6, start = 0, end = 1)
autoplot(acp, data = datosstd2, col = 'ESTU_RESIDE_DEPTO', loadings = TRUE,
         loadings.colour = 'black', loadings.label = TRUE,
         loadings.label.size = 4) + 
  scale_color_manual(values = colores) +
  geom_vline(xintercept = 0, lty = 2, lwd = 1.2, col = "blue") +
  geom_hline(yintercept = 0, lty = 2, lwd = 1.2, col = "blue") +
  labs(x = "Componente principal 1",
       y = "Componente principal 2",
       color = "Departamento") + 
  theme_bw()

Estudiantes proyectados sobre las componentes principales 1 y 2 por departamento (Antioquia)

coloresp <- paste0("gray", seq(5, 68, 2))
autoplot(acp, data = datosstd2, col = 'ESTU_RESIDE_DEPTO') + 
  scale_color_manual(values = c("gray1", "gray3", "green2", coloresp)) +
  geom_vline(xintercept = 0, lty = 2, lwd = 1.2, col = "red") +
  geom_hline(yintercept = 0, lty = 2, lwd = 1.2, col = "red") +
  labs(x = "Componente principal 1",
       y = "Componente principal 2",
       color = "Departamento") + 
  theme_bw()

Estudiantes proyectados sobre las componentes principales 1 y 2 por jornada

colores <- rainbow(n = 7, v = 0.6, start = 0, end = 1)
autoplot(acp, data = datosstd2, col = 'COLE_JORNADA') + 
  scale_color_manual(values = colores) +
  geom_vline(xintercept = 0, lty = 2, lwd = 1.2, col = "blue") +
  geom_hline(yintercept = 0, lty = 2, lwd = 1.2, col = "blue") +
  labs(x = "Componente principal 1",
       y = "Componente principal 2",
       color = "Jornada del colegio") + 
  theme_bw()

Estudiantes proyectados sobre las componentes principales 1 y 2 por naturaleza del colegio

autoplot(acp, data = datosstd2, col = 'COLE_NATURALEZA') + 
  scale_color_manual(values = c("gray10", "orangered2")) +
  geom_vline(xintercept = 0, lty = 2, lwd = 1.2, col = "blue") +
  geom_hline(yintercept = 0, lty = 2, lwd = 1.2, col = "blue") +
  labs(x = "Componente principal 1",
       y = "Componente principal 2",
       color = "Naturaleza del coleio") + 
  theme_bw()